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AFIT/GAE/AA/80D-17

Abstract

The object of this study is to find the trajectories

which a high performance aircraft would employ to maximize

the change in specific energy during a prescribed turn.

These values of the change in specific energy are compared

to the changes in specific energy which result from a

minimum time turn. A suboptimal control approach, which

uses both gradient and second-order parameter optimization

techniques, is employed to find the maximum specific energy

trajectories.

The results of the study show that turning times slightly

greater than the minimum turning time allow large increases

in aircraft specific energy, and that the trajectories can be

flown with simple control inputs.
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TIME-CONSTRAINED MAXIMUM-ENERGY TURNS

I Introduction

Background

Today's rapidly advancing technology has produced great

improvements in fighter performance. Modern aircraft such

as the F-15 and the F-16 have a thrust-to-weight ratio greater

than one, and employ lightweight composites in some areas.

These give the aircraft excellent maneuverability, far exceed-

ing older aircraft such as the F-4 and the F-ll. In light of

this new capability, air combat tactics are being reviewed

and modified so the pilot can take full advantage of the

increased maneuverability. Aircraft modifications are also

studied when further improvement may be possible.

Over the last decade the advantages and disadvantages

of thrust reversal have been debated (Ref 1,2). The Navy

tested a Grumman F-11 with an 'inflight thrust reverser and

found that it could produce rapid accelerations and deceler-

ations (Ref 3). However, they did not examine specific

combat scenarios.

Johnson (Ref 4) studied minimum-time turns with thrust

reversal. These 180 degree turns are common air combat

maneuvers, and the pilot generally needs to turn as quickly

as possible. Johnson found that thrust reversal could improve

turning time, but the improvement was generally very small and

could cost a great deal of aircraft specific energy. This

t1
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was a serious drawback, since specific energy is a measure

of the aircraft's ability to engage and defeat opponents.

One of Johnson's recommendations was to consider ways of

conserving energy during a turn.

Problem Statement

The problem is finding the optimal controls that will

maneuver a fighter aircraft through a given turn and enable

the aircraft to gain the maximum energy. Turns are evaluated

by taking sligh' y raore time than the minimum and computing

the controls. The minimum times were computed by Johnson

(Ref 4). The simulation will include aircraft performance

limits on thrust, angle-of-attack, and load factor.

The objective of the study is to determine whether a

slightly longer turning time allows the aircraft to gain a

significant amount of energy. A sufficiently large energy

gain may well justify the longer turning time. If a large

energy gain is obtained then an additional objective will be

to determine simple tactics for flying the turn. The use of

thrust reversal is not anticipated, but it is not specifically

excluded.

The scope of this study is limited to finding the optimal

trajectories and final energies starting from two different
V

velocities and terminating at three sets of final conditions.

Thus, six different cases are evaluated. The velocities are

taken from previous work in order to make a meaningful com-

parison.
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Assumptions

The following assumptions are made in order to model the

equations of motion, the aerodynamic forces, and the atmos-

phere:

a) the aircraft flies over a flat earth with

constant gravity;

b) all turns are coordinated;

c) negligible fuel is consumed during the turn;

d) thrust is collinear with velocity;

e) errors introduced by small angle assumptions

are negligible;

f) lift is a linear function of angle of attack up

to the angle of attack limit;

g) maximum thrust is available throughout the turn;

h) the atmosphere is modeled using the NASA standard

atmosphere (Ref 5);

i) the aircraft is initially in straight and level

flight;

j) controls are instantaneous.

These assumptions are identical to those employed in past

studies (Ref 4,6). Thus, it is possible to compare results.

with these studies.

Approach

A specific turning situation is defined with initial

and final conditions. The optimal control problem is defined

and solution difficulties are explored. The problem is

simplified by using a suboptimal control approach. This

3
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approach is straightforward and has proved to be an effective

means of computing the controls (Ref 6,7).

Summary of Current Knowledge

Johnson's minimum turning times for two sets of initial

conditions are shown below. Neither case has reverse thrust

capability.

Table 1. Minimum Turning Times

V. hi  Ei  Vf hf Ef tf

(ft/sec) (ft) (ft) (ft/sec) (ft) (ft) (sec)

621 13990 19991 781 17350 26829 9.643

903 13990 26678 672 16150 23168 11.178

These results were obtained with the flight path angle and

the heading angle initially equal to zero and final conditions

of zero flight path angle and 180 degrees heading angle. The

same initial and final conditions are used in this study in

order to compare results.

4
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II The Energy Turn Problem

The concept of the energy turn problem is to define

trajectories which allow the aircraft to perform a specific

turn and maximize the energy change

AE = (Ef Ei) = (hf-hi) + -(Vf V i ) (1)

during the turn. The turn is defined in terms of initial and

final conditions. Then the equations of motion, aerodynamic

forces, and atmosphere are specified.

Turn Conditions

The aircraft is assumed straight and level at the start

of the turn. Initial and final conditions are summarized in

Table 2, below:

Table 2. Initial and Final Conditions

CASE V. (ft/sec) h. (ft) a 0 u0  0 0 0  t t. (sec)
i i i f f f min

1 621 13990 0 0 0 180 1.05tm 9.643

2 621 13990 0 0 0 180 1.10t 9.643! min

3 621 13990 0 0 0 180 1.25t m 9.643
4 903 13990 0 0 0m1801.05t min 11.178

4 903 13990 0 0 0 180 1.05tm 11.178

5 903 13990 0 0 0 180 1.l0t~ 11.178
min

6 903 13990 0 0 0 180 1.25t . 11.178min
.4

V is chosen below and above the corner velocity. The value

of t is from Johnson's results (Ref 4).min

Equations of Motion

During the turn the aircraft must obey the dynamic

45



equations of motion. Because trajectory analysis is concerned

only with the development of the flight path, the aircraft

can be modeled as a point mass. The equations of motion for a

point mass aircraft over a flat earth as developed in Ref

(8:48-49) are:

= Vcosecos (2)

= Vcosesin (3)

h = Vsine (4)

= g(icosecosc - w- sine) (5)

Qgsin4 , gLcos- gcose - T

WV WV V WV

cos~sinc) (6)

gsin _ . +_ (7)
Vcose(W W

Application of earlier assumptions yields Q=Q, sin =O, c=a,

sina=a, and cosc=l. The simplified equations are:

= vcosecosp (8)

= VcosOsin (9)

h = Vsine (10)

g(w - 2 - sine) (11)
T W

_ + 1)cosF - cose} (12)

(gsin(0 + L) (13)
Vcose W W1
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Aircraft motion is modeled with respect to an earth-fixed

coordinate frame. The six state variables are x , y

h , V , 6 , and i . The three control variables are

a, , and T . The gravitational acceleration at

13990 ft is g = 32.131 ft/sec 2 and is used throughout the

turn. The aircraft weight is 12150 lbs. The aerodynamic

forces, thrust, and atmosphere models appear in the sections

that follow.

Aerodynamic Forces

These forces are composed of lift and drag. They are

expressed as follows:

L = p aV2SCL (14)

2
D = p oaV 2SCL (15)

2

CL =CL a (16)

2
CD =C D + KCL  (17)

0

For the aircraft modeled in this study, S = 237 ft2 and

CL = 5.0 (Ref 4). Since flight in the transonic region is
L

possible, compressibility corrections are made for K and

CD (Ref 9):
~0

0 Table 3. Compressibility Corrections

M K CD

0.0-.8 .05 .02
° 2

0.8-1.05 .05 + .4(M-.8) .02 + (M-.8) {6.016-5.12M}

1.05-1.25 .05 + .4(M-.8) .06 - .05(M-1.05)

4 7
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The corrections are approximate and are typical of this type

of airfoil. Figure 1 depicts K and CD  vs M.

00

0.2 K

K,C D

0.1

0.05
0.02
0

.7 .8 .9 1.0 1.1 1.2 1.25 M

Figure 1. K and C vs M.D
0

Thrust

It is assumed that maximum thrust is available throughout

the turn. Thrust is given as

T =T mx7, (18)

where n is a thrust control variable. For constant weight

the thrust to weight ratio becomes

T T
T max T T x (19)
W W iWmax

For this aircraft the maximum thrust-to-weight ratio is 1.5.

Atmosphere

The density ratio a in a standard atmosphere is defined

(Ref 9) as

1

a R 1 nh}T (20)

8tI

.t-



The constants are:

p = .002378 slugs/ft30

go = 32.174 ft/sec
2

T = 518.688 deg R

n = 1.235

R = 1715 ft 2/sec-deg R

Control Constraints

There are three aircraft constraints. They are the angle

of attack limit, the structural load limit, and the thrust

limit:

amin a < a max (21)

L L (22)
W - W max

Tmi n < T< Tma x  (23)

or

7min < T < T(max (24)

The maximum lift-to-weight ratio for this aircraft is 7.22.

The maximum angle of attack is 0.2 radians.

9
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III Optimal Control Approach

Classically, trajectory problems such as this are

phrased in terms of an optimal control problem. This

chapter defines the basic conditions that the optimal solution

must satisfy.

Optimal Control Problem

The optimal control problem requires finding the

functional relationships for the control variables that will

maximize the aircraft specific energy. The energy is

expressed as the performance index

G =h + -f (25)f 2g

which is subject to the differential equations of motion

X = f(X'u)

where X is the state vector and f represents the right side

of eqns (8) through (13). The problem is further subject to

the control constraints, eqns (21) through (24), and the

initial and final conditions of Table 2. The final conditions

are expressed as

M =0 f(26)

= p 180. (27)

When the final conditions are satisfied,

M1
-o0 (28)

10



Conditions to be Satisfied

(Ref {1:149-1541)

The solution of the optimal control problem maximizes

an augmented performance index, J, as

tf

J = G + vTM + AT(f-X)dt (29)

t. 1

where v and X are Lagrange multipliers. The variational

Hamiltonian, H, is expressed as

H(X,u,X) = ATf. (30)

The optimal solution must satisfy the Euler-Lagrange equations:

-HxT _(2-)T (31)

k H T (H T (32)

Smin H (33)

opt U

The solution must also satisfy corner conditions and transver-

sality conditions:

Hi = Gt = 0 (34)
1

H + G = 0 (35)f t f

1 X.
1

fT

T-G =0 (37)
f X f

A(H) -Gt =0 (38)
c

11



A(AT) +G = 0 (39)
x

G V= 0 (40)

Solving the Optimal Control Problem

(Ref 11)

If the controls are neither on the boundaries nor sing-

ular, eqn (33) implies H u = which may be solved for the

controls as functions of X and A. Thus, the problem is

converted to a boundary value problem. Initial values of A

are guessed, and the k and X equations are integrated.

Generally, the end conditions are not satisfied. Various

techniques can be used to vary the initial guesses, so that

the end conditions (eqns (26), (27)) are satisfied.

One major problem with this method is guessing reasonable

A's. This is difficult because the X's are not related to any

physical quantities. Additionally, corners must be specified

and this further complicates the problem. Hence, the boundary

value problem is extremely difficult and time-consuming to

solve. Since the problem is so difficult, the approach must

be simplified so that a reasonable solution can be obtained.

The Suboptimal Control Method is used to accomplish this.

12



IV The Suboptimal Control Problem

The suboptimal control problem is a parameter optimization

problem. This transformation is achieved by assuming that

the controls can be described by a known mathematical form,

such as a polynomial, with coefficients represented by a

vector A (Ref 4,6,7). Then the controls can be written as

U = U(t,A) (41)

Equations (8) through (13) can be integrated from t=O to

t=tf and the final states will be functions of the A parameters:

X = Xf(A) (42)

Hence, the performance index G and the final conditions M are

also functions of A. The problem, then, is to find the A

parameters which maximize the specific energy, G,

G = G(A) (43)

subject to the equations of motion

X = f(X,A,t), (44)

the final conditions

M(A) = 0, (45)

and the control limits.

Conditions to be Satisfied

The augmented performance index, F, is defined as
'1
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F(A,v) = G(A) + vTM(A) (46)

Ordinary differential calculus requires an optimal set of

A's and v's to satisfy 2 conditions:

FA T(A,v) = GA + v TMA = 0 (47)

T
F (A,v) = M(A) = 0 (48)

where MA and GA are defined as

M Sa (49)
MA - A

G G (50)
GA - A

FA represents a gradient that indicates the direction A
T.

should change to drive FA to zero. FA  is a function of the

A parameters. M is the final condition matrix which has two

elements. A solution to the suboptimal control problem

must only satisfy eqns (47) and (48). The v's can be computed

with a gradient method (described i- the next section), so the

A coefficients are the only values which must be guessed.

These are the controls and are easy to guess since they directly

relate to physical quantities. The optimal control problem

requires one to guess A's, which are unrelated to physical

'4 quantities and are very difficult to guess. Thus, the sub-

optimal approach is much simpler to implement than the optimal

control approach.

Method of Solution

Hull and Edgeman define a second order parameter

14



optimization technique in Ref 7. This technique is designed

specifically for suboptimal control problems and is employed

here. The method uses second order information to change the

A parameters and the Lagrange multipliers v such that FA and

M are driven to zero (eqns (47) and (48)). Changes to A and

v are computed as follows:

6V = (MA F AA-MAT)- (-PMA F AA-FA T + QM) (51)

6A = -FAA- 1 (PFAT + MA T) (52)

where

2F
FU - - G + M + M(53)

DA 2 AA 1 AAl 2 AA2(

P and Q are scaling factors that control optimization and

end condition satisfaction, while FAA contains second order

information. The iterative algorithm for the method is:

1. guess v and A

2. integrate the equations of motion to find X

3. compute M, MA, MAA , GA, and GAA

4. select values of P and Q

5. compute values of 6v and 6A

6. compute v = v+6v and A = A+6A

7. check for convergence and go to step 2 if not

converged.

Convergence is obtained when each F A term and each M are less

* than some small tolerance. The initial vector v is computed

using relationships which were developed by Hull and Edgeman:

15



= (MAMA ) {(Q/P)M - MAGA T (54)

6A = -PFAT (55)

One characteristic of the second-order method is that it

requires very good initial guesses. Usually the first-order

method is used until the changes in v and A become very

small. Then, the second-order method is employed (Ref 4,7).

The only real difficulty with the suboptimal control

approach involves the selection of the scaling factors P and Q.

This is explained in section V.

16



V Solving the Constrained Energy Turn Problem

The energy turn problem must be solved with numerical

methods. Here, the energy turn problem, defined in chapter

II, is adapted to the suboptimal control method. This chapter

presents the actual forms of the equations of motion, control

constraints, numerical derivatives, and convergence criteria.

Equations of Motion

The equations of motion are represented by eqns (8)

through (13). Substitutions for the aerodynamic, atmospheric,

and gravitational parameters yield the following equations:

dx - Vcosecosip (56)

dy Vcosesinp (57)

dh

dh = VsinO (58)
adt

dV - 48. 20f - V2 (D/12150) - 32.13sine (59)
dt "

d_ 3 2 .1 3 t(1.5na + (L/12159))cos - cos8} (60)

d( 32.13(1.5 + (L/12150)) (61)

Control Variable Constraints

Two of the three controls are affected by constraints.

The thrust parameter has a maximum value of 1, so that

0 < < 1 (62)

17



Equations (21) and (22) each- define a constraint on the

angle of attack. For the load factor,

<V2La (63)
2WW max

The load factor constraint can be simplified to

aV2a < 62060.6 (64)

The angle of attack constraint is

a < .2 (65)

These constraints are illustrated in Figure 2.

max

S= 62660.6
V

a!

Velocity Vc

Figure 2. Angle of Attack vs Velocity

'.4

The corner velocity Vc is the velocity at which the lift

coefficient for flight at the maximum load factor is the

maximum lift coefficient. The corner velocity can be

specified as.4

= 62660.6) (66)
c amax

9I

Using eqn (65) for a yields~max

Vc = 559.735c -  (67)

18



Control Variable Form

The controls were represented by a series of Chebyshev

polynomials. These polynomials were selected because of good

numerical behavior over the control ranges (Ref 8). The

polynomials, Ti (t), are functions of time. For i=l to i=6

they are as follows:

T1 (t) = 1 (68)

T2 (t) = 2t - 1 (69)

T3 (t) = 8t 2 
- 8t + 1 (70)

T4 (t) = 32t 3 
- 48t 2 + 18t - 1 (71)

T5 (t) = 128t 4 
- 256t 3 + 160t 2 

- 32t + 1 (72)

T6 (t) = 512t 5 
- 1280t 4 + 1120t - 400t 2 + 50t - 1(73)

The control variables are then

NPH
(dt) = BkTk(t) (74)

k=l

NPI
ff(t) = E C T (t) (75)

m=l mm

NA
a(t) = Z D T (t) (76)

n=l n

where B, C, and D are the unknown coefficients; NPH, NPI,

and NA are the numbers of unknown coefficients; and , ,

and a are the corresponding controls.

The constraints are exercised in the program by limiting

19
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the value of each control to its known maximum or minimum

whenever the polynomial would require it to exceed those limits.

During the integration the controls are continually checked

to determine if they are moving onto or off of a boundary. If

so, the integration stepsize is adjusted so that the integration

stops and starts again when the controls intersect the

boundaries. In this manner the accuracy is preserved. This

is especially important for the a limits.

Under certain conditions the 7 and a controls will not be

parameters in the problem. This situation is best illustrated

by the case in which all the controls are constant. If Tr

and/or a are at their maximum values and if the F A's for

these controls are negative, then in order to change the

controls so the F Ats are driven to zero, the controls must

exceed their maximum value. Likewise, if either control is

at its minimum and the corresponding F A is positive, then the

control must go below its minimum value. In either case, the

coefficients no longer become parameters because they are

fixed at their limits and their F Aterms cannot be driven to

zero. Thus, the effects of these coefficients must be elimin-

ated in order to calculate 6v and 6A without their influence.

This is accomplished by dropping these parameters from the

matrices used to calculate 6v and 6A (Ref 4).

Numerical Methods

The algorithm requires the matrices M, M At M AA G A, and

G AA M is evaluated by integrating the equations of motion

to yield the final states. A fifth-order, Runge-Kutta,

20



controllable step size integration technique employing

Fehlberg coefficients is used (Ref 13). The variable step

size provision allows the technique to limit truncation error

and makes it more accurate than fixed-step methods.

The MA, MAA, GA, and GAA matrices are determined by

using a central difference numerical derivative technique

(Ref 14). The equations of motion integrated using a positively

perturbed A
n

An+ An +6n (77)

and a negatively perturbed A
n

A = A - 6n (78)
n- n

with 6n as some small value. This yields M+, M_, G+, and

G_. MA and GA are computed as

M+ ( 2n) (79)

MA 26n

G+-G_ 2
G A+ G(62n) (80)
A 26n

where 62n is the error term. The MA matrix contains two rows.

The first row is determined by substituting M values from eqn

(26) into eqn (90). The second row comes from eqn (27) and eqn

(90). The two M matrices and the matrix are obtained

using a similar technique. Two parameters An and Am are each

perturbed both ways so that M++, M__, M+_, M_+, G++, G__, G+_,

and G_+ are obtained. The central difference representations

for the second derivatives are:
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M+ - 2M + 2nm - +o(62n) (81)An Am 6n 2

and

G + - 2G + G 2=A - +o(62n) (82)
GAn Am 6n 2

if n = m, and

M+ - M+ -M_+ + M_

MA A = ++ + o(6n6m) (83)
n m 46n6m

and

G ++ -G+- G_+ + G__GAA = 4 - + a (6n6m) (84)

n m 4Sndm

when n i m. As before, the MAA matrices are formed by using

eqn (26) values for the first matrix and eqn (27) values for

the second matrix.

The error terms can be ignored for sufficiently small

6n's. 6n is computed as

6n = (A ; (85)

however, if the absolute value of 6n is smaller than E, then

6n = (86)

where is a small positive number. Various values were

tried in preliminary calculations in order to determine an

accurate one. It was found that

= 0.002 (87)

gave consistent, accurate results.
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Convergence Factors

The P and Q factors control optimization and end

condition satisfaction, respectively. These factors are

used to determine the size of 6v and 6A for each iteration.

If the P's are too large, the method will miss F A=O0 and M=0.

If the 6's are too small, truncation error will cause the

method to wander, again missing the solution. A variety of

procedures can be devised to vary P and Q, but 6v and 6A

must fall in a linear region about the nominal values. For

the energy turn problem the algorithm was started with Q=l.

This allowed the algorithm to quickly match the end conditions.

P was slowly raised as the F A terms decreased. The best end

conditions and performance index are obtained when Q=P=l (Ref 7).

Initially the gradient method was used. When it became

inefficient the second-order method was employed. The method

was stopped when P=l and the following conditions were satisfied:

*M < 10- (88)

F < 10- (89)A

Excluded were F Aterms related to boundary controls, since

these terms can not be driven to zero.

Control Evolution

The trajectory evaluation was started by using constant

controls for the bank, thrust, and angle of attack. The

iteration procedure was followed until the solution satisfied

eqns (88) and (89). Then another bank angle coefficient was

included and another solution was computed, with bank as a
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linear function of time. The bank coefficients were continually

increased in this manner until the additional coefficient had

little effect on the performance index. Finally, ways of

improving the other controls were studied.

This approach to the controls was used on the six cases

described in Table 2. The first three cases start from

Vi=621 ft/sec with the final time equal to 105%, 110%, and

125% of the minimum turning time, respectively. The second

three cases start from Vi=903 ft/sec with the final time equal

to 105%, 110%, and 125% of the minimum turning time, respectively.

Trajectories were computed for these six cases, and then the

thrust controls were modified for the high speed cases of

105% and 110%. These results are presented in the next

chapter.
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VI Results

The trajectories that have been obtained show that a

moderate increase in turning time can increase the specific

energy. In some cases the increases are quite large.

The best gains occur for the high speed cases, with

V .=903 ft/sec. When performing a minimum time turn one tries

to decelerate to the corner velocity, since the turn rate is

highest at that velocity. In Johnson's study, this deceleration

caused a large loss of energy (Ref 4). By increasing the

turning time, one allows a slower turn rate, which then permits

a higher aircraft velocity. Thus, less deceleration is

required and the final velocity and specific energy are higher.

As each case was solved the effects of each control became

apparent.

The thrust control adds energy to the aircraft. This

energy can be used to increase velocity, altitude, or some

combination of both. One would anticipate that the highest

energy gains would utilize maximum throttle, and this was

proved true. Cases 1, 2, 3, and 6 had a full throttle (7T=1)

in their final trajectories.

The angle of attack control determines the turn rate and

the climb rate. Johnson (Ref 4) found that a~a max gave the

highest turn rate, and that lower a's required longer to turn

the aircraft. In cases where the turning time is quite short

(1.05t )a full a is required in order to satisfy the endmin max

conditions. In cases 2 and 3 the turning time is large enough
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so that a is less than amax for a portion of the turn.

The bank angle matched the thrust to the turn rate so

th end conditions would be satisfied. It also establishes

the plane of the turning trajectory. The results show the

turn is performed in a constant plane in three-dimensional

space. This plane is inclined to the y-axis and includes the

x-axis. Thus, a graph of crossrange y versus altitude h shows

the trajectories as essentially straight lines (Figs 13-15).

For the high speed cases the planes became more vertical as

the number of bank coefficients was increased, illustrating

altitude gains from one solution to the next.

The optimal coefficients for the polynomial controls of

cases 1, 2, and 3 are shown in Tables 4, 5, and 6. As the

bank control is increased in complexity the performance index

increases. Ho~wever, above linear forms the additional bank

coefficients do not add a large amount of energy. The controls

are computed for constant, linear, quadratic, and cubic roll

functions while holding thrust and angle of attack constant.

The roll control histories for the low speed cases are shown

in Fig 3 through Fig 5. Crossrange plots for each case are

in Fig 6 through Fig 8. Figure 9 shows the final energy

trajectory for each case on a velocity-altitude graph. As the

graph shows, the specific energy does rise dramatically from

one case to the next. This graph can be related to past studies

of energy maneuvers.

Rutowski studied minimum time energy climbs in his paper

on aircraft performance (Ref 15). He found that for a pure

4 26
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climb, a minimum time energy trajectory would follow the

gradient of the constant energy lines that it crossed. Thus,

a velocity-altitude graph would show the trajectory running

perpendicular to the constant energy lines. Less efficient

trajectories would gain less energy for the same time of flight.

In this study, the aircraft climbs higher whenever the turning

time is increased. In each successive case the trajectory

becomes more perpendicular to the energy lines, hence producing

more efficient energy climbs. It is interesting to note

that in this study the optimal path is also a perpendicular

climb even though the aircraft is also turning as it climbs.

Case 3 has a large turning time; it has converged to a

perpendicular climb.

The optimal coefficients for cases 4, 5, and 6 are shown

in Tables 7, 8, and 9. As before, increasing the bank

control complexity increased the performance index. The bank

controls were taken up to quintic forms for cases 4 and 5 and

a quartic form for case 6. Figure 10 through Fig 12 illustrate

the roll controls and Fig 13 through Fig 15 show the turning

planes. As the roll control complexity increases, the

trajectories become more vertical. Figure 16 shows energy

trajectories for these cases. Case 4 loses a lot of velocityI as it decelerates toward the corner velocity. As time is

increased the energy increases. The trend from case 4 through

to case 6 is again to produce a perpendicular climb, though

there was insufficient flight time to allow a climb such as
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case 3. Cases 4, 5, and 6 had a constant angle of attack and

throttle, as the first three cases did. Cases 4 and 5 had a

partial throttle (7<1) which limited the energy available to

the aircraft. During any turn the throttle energy can be

converted to increased altitude or velocity. In these cases

the angle of attack was already at the limit, hence preventing

further altitude gain. The turning time limited the turning

velocity, hence it could not be increased. The partial

throttle values that were computed for these cases represent

the maximum energy that could be converted during the turn.

Linear throttle controls were used with the initial

conditions and final conditions of cases 4 and 5, creating

cases 7 and 8. It was expected that a different throttle

control could increase the energy available during the turn.

The new throttle controls had a very high slope and crossed

both the lower and higher boundaries of the control range.

This implied that bang-bang controls would be appropriate.

A bang-bang control can instantly switch from off to on, and

viceversa. The controls that were computed required off-thrust

initially, and then full-thrust after a short time into the

turn. Table 10 has the control coefficients for cases 7 and

8 and Fig 17 shows the roll histories. The turning planesI are shown in Fig 18. Figure 19 illustrates all the high-speed

energy trajectories(cases 4 through 8). Cases 7 and 8 both have

more perpendicular trajectories than the comparative cases 4

and 5. Both cases initially decelerate, allowing the aircraft

to accomplish a good portion of the turn. Then the aircraft
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attains a high rate of climb and cuts across the energy lines

in an efficient manner.

The energy gains for the final trajectory of every case

are shown in Table 11. All the turns have higher energies

than the minimum time turns, and the energy always increases

as the time increases. The benefit of increased energy would

have to be weighed against the increased turning time.

Thrust Reversal

Cases 7 and 8 use bang-bang controls to increase perform-

ance over the constant throttle cases. However, this type of

throttle control would be impossible to implement with today's

engines, since the engines require a few s econds to cycle

from idle to full power. One possible way to avoid this

problem is to operate the engine at full power and deflect a

portion of the thrust. By using a mechanical thrust reverser

on the engine nozzle, one could reverse 50% of the thrust and

produce zero net thrust. Full thrust would be available with

retraction of the reverser, and this could be accomplished

very quickly. This would have the additional advantage of

eliminating engine thermal cycles, thus improving maintenance.

Pilot Technique

The trajectories obtained here can be generalized toI yield a few rules-of-thumb for pilots attempting to fly

energy trajectories.

6 For the low speed cases, throttle should be set at

maximum and the load factor held at the maximum throughout

the turn. This turn can be improved by adjusting the roll
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in order to stay in the same turning plane.

For the high speed cases the angle of attack is held on

the angle of attack limit and the throttle should be varied

depending on how long the pilot is willing to stay in the turn.

A higher throttle increases energy but takes longer to turn.

Roll should be used to hold the turn in a plane.
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VII Conclusions and Recommendations

The following conclusions and recommendations are based

on the results of this study.

The Suboptimal Control Approach is an effective means

of solving trajectory problems such as this one. The method

is straightforward and offers many advantages over the

Optimal Control Approach.

Increasing turning time allows substantial gains in energy.

Table 11 shows that even a small increase in time can greatly

increase the final energy. For the low speed case, a 5% time

increase yields a 29% energy gain over the minimum time

result. For the high speed case, a 5% increase will allow a

gain of 33% final energy over the minimum time case. This

33% gain amounts to 8701 energy feet. As the times were

increased by 10% and 25%, the results were even better for

both the high and low speed situations. Bang-bang controls

were effective in improving performance for the high speed cases.

These controls could possibly be implemented with an in-flight

thrust reverser.

Relatively simple techniques can be used to fly energy

turns. In most cases a full throttle is permissible, thus

freeing the pilot to concentrate on the angle of attack and

* the roll angle.

* It is recommended that vertical climbs be investigated

as ways to perform energy turns. These would be Immelman

maneuvers. The equations of motion would have to be modified
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because the equation (eqn 13) would have an undefined term

at 0 = 900. The crossrange graphs show increasingly vertical

lines as the roll coefficients are increased, implying that

a vertical climb would be interesting to investigate.
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